برآورد بارش به کمک شبکه عصبی مصنوعی با داده¬های هواشناسی غیربارشی در سه منطقه شیراز، مشهد و کرمان

نویسندگان

علیرضا ایلدرمی

حمید زارع ابیانه

مریم بیات ورکشی

چکیده

عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمان­های مختلف است. در این راستا به­دلیل عدم قطعیت­هایی که وجود دارد، نوسان­های زیادی در مقدار بارش ایجاد می­شود که پیش­بینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاس­بندی مجدد (r/s) و محاسبه نمای هرست (h) پیش­بینی­پذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پارامتر بارش قابلیت پیش­بینی­پذیری را دارد، زیرا h از 5/0 بزرگ­تر بوده و بمراتب به­مقدار 1 نزدیک­تر است. به­طوری­که نمای هرست از حداقل 8/0 در ایستگاه مشهد تا حداکثر 92/0 در ایستگاه شیراز در نوسان بود. به منظور پیش­بینی بارش از شبکه­های عصبی مصنوعی استفاده شد. نوع پارامترهای ورودی براساس آزمون همبستگی پیرسون از بین داده­های غیربارشی، ترکیبی از داده­های دمایی و رطوبتی بودند. تعداد پارامترهای ورودی، تعداد لایه­های میانی و سایر اطلاعات مربوط به شبکه عصبی مصنوعی به صورت تصادفی انتخاب و پیشنهاد شدند. در مجموع از شبکه­های عصبی پرسپترون چند لایه برای برآورد بارش استفاده شد. مقایسه عملکرد شبکه­های عصبی، نشان داد که استفاده از 3 و 4 پارامتر هواشناسی، بهترین رتبه برآوردگری را داشته­اند. آرایش­های پیشنهادی برای ایستگاه شیراز، 1-21-21-3، کرمان 1-25-25-3 و مشهد 1-19-19-4 دارای ضریب همبستگی بیش از 91 درصد شد. اعتبارسـنجی مدل­های بارش نشان داد که شـبکه­های طراحی شـده برای پارامتر بارش در ایستگاه­های مشهد، شیراز و کرمان به ترتیب با خطای 4، 11 و 14 درصد، دارای بهترین عملکرد بوده­اند. در مجموع نتایج نشان می­دهند که استفاده از روش شبکه عصبی با درنظر گرفتن اطلاعات دمایی و رطوبتی، نتایج مناسبی برای توصیف فرآیند و ترکیب آن­ها در پیش­بینی، به­دست می­دهند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برآورد بارش به کمک شبکه عصبی مصنوعی با داده های هواشناسی غیربارشی در سه منطقه شیراز، مشهد و کرمان

عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمان­های مختلف است. در این راستا به­دلیل عدم قطعیت­هایی که وجود دارد، نوسان­های زیادی در مقدار بارش ایجاد می­شود که پیش­بینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاس­بندی مجدد (r/s) و محاسبه نمای هرست (h) پیش­بینی­پذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پا...

متن کامل

ارزیابی دقت شبکه عصبی مصنوعی بازگشتی نارکس در پیش بینی بارش روزانه در استان کرمان

بارش یکی از پارامترهای مهم اقلیمشناسی و سایر علوم جوّی که از اهمیّ تّ والای یّ در حیات بشر برخوردار است. در سالهای اخیر، سیل و خشکسالی خسار های فراوانی را در بس یّاری از مناطق جهان در پی داشته است. پیش بینی بارش در مدیریت و هشدار این معضلا نق شّ مهمی بر عهده دارد. امروزه شبکههای عصبی مصنوعی از جمله روشهای نوین م یّباش دّ ک هّ برای تخمین و پیشبینی پارامترها با استفاده از ارتباط ذاتی بین دادهه اّ توس عّه یا...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نشریه جغرافیا و برنامه ریزی

ناشر: دانشگاه تبریز

ISSN 2008-8087

دوره 17

شماره 43 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023